References

i

OakRegeneration (2018). ÁREAS DE REGENERAÇÃO NATURAL DE SOBREIRO: RESULTADOS PRELIMINARES DE PADRÕES DE OCORRÊNCIA NO MONTADO. Conference paper, 13 pp.

i

Costa A & Pereira C (2007). Manual de instalação de novos povoamentos com sobreiro - Aplicação de boas práticas nas regiões da Chamusca e de Alcácer do Sal. ISA, ERENA, ANSUB, ACHAR.

i

Mendes MP, Cherubini P, Plieninger T et al (2018) Climate effects on stem radial growth of Quercus suber L.: Does tree size matter? Forestry (in press).

i

Costa A, Madeira M & Plieninger T (2014). Cork oak woodlands patchiness: A signature of imminent decline? Applied Geography 54: 18-26.

i

Costa A, Madeira M & Santos JL (2014). Is cork oak (Quercus suber L.) woodland loss driven by eucalyptus plantation? A case-study in southwestern Portugal. IForest - Biogeosciences and Forestry 7: 193-203.

i

Costa A, Madeira M, Santos JL et al (2014). Fragmentation patterns of evergreen oak woodlands in Southwestern Iberia: identifying key spatial indicators. Journal of Environmental Management 133:18-26.

i

Costa A, Madeira M, Santos JL et al (2011). Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landscape and Urban Planning 102(3):164-176.

i

Acácio V, Holmgren M, Jansen PA et al (2007). Multiple recruitment limitation causes arrested succession in Mediterranean cork oak systems. Ecosystems 10:1220-1230.

i

Acácio V, Holmgren M, Moreira F et al (2010). Oak persistence in Mediterranean landscapes: the combined role of management, topography, and wildfires. Ecology and Society 15(4): 40.

i

Acácio V, Holmgren M, Rego F et al (2009). Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agroforestry Systems 76: 389-400.

i

Arosa ML, Ceia RS, Costa SR et al (2015). Factors affecting cork oak (Quercus suber) regeneration: acorn sowing success and seedling survival under field conditions. Plant Ecology & Diversity 8(4): 519-528.

i

Bernhardt EA & Swiecki TJ (2001). Restoring Oak Woodlands in California: Theory and Practice. Phytosphere Research.

i

Brudvig LA & Asbjornsen H (2008) Patterns of oak regeneration in a Midwestern savanna restoration experiment. Forest Ecology and Management 255:3019-3025.

i

Carmona C P, Azcárate FM, Oteros-Rozas E et al. (2013). Assessing the effects of seasonal grazing on holm oak regeneration: Implications for the conservation of Mediterranean dehesas. Biological Conservation 159: 240-247

i

Cierjacks A & Hensen I (2004). Variation of stand structure and regeneration of Mediterranean holm oak along a grazing intensity gradient. Plant Ecology 173:215–223.

i

Clark FB (1992) An historical perspective of oak regeneration. In: Oak regeneration: Serious problems, Practical Recommendations. DL Loftis and CE McGee (eds) Symposium Proceedings, Knoxville, Tennessee p. 3-13.

i

Costa A, Villa S, Alonso P et al (2017) Can native shrubs facilitate the early establishment of contrasted co-occurring oaks in Mediterranean grazed areas? Journal of Vegetation Science 28:1047-1056.

i

Espelta JM, Riba M & Retana J (1995). Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. Journal of Vegetation Science 6(4):465-472.

i

Gea-Izquierdo G, Cañellas I & Montero G (2006). Acorn production in Spanish holm oak woodlands. Forest Systems 15(3): 339-354.

i

Gómez JM (2003). Spatial patterns in long-distance dispersal of Quercus ilex acorns by jays in a heterogeneous landscape. Ecography 26:573-584.

i

Gómez-Aparicio L, Zamora R, Gómez JM et al (2004). Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecological Applications 14(4):1128-1138.

i

Gómez-Aparicio L, Valladares F, Zamora R et al (2005).Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography 28:757–768.

i

Listopad MCS, Köbel M, Príncipe A et al (2018). The effect of grazing exclusion over time on structure, biodiversity, and regeneration of high nature value farmland ecosystems in Europe. Science of the Total Environment 610-611: 926-936.

i

Maltez-Mouro S, García LV, Marañón T et al (2007). Recruitment patterns in a Mediterranean oak forest: a case study showing the importance of the spatial component. Forest Science 53(6):645-652.

i

Maltez-Mouro S, García LV & Freitas H (2009). Influence of forest structure and environmental variables on recruit survival and performance of two Mediterranean tree species (Quercus faginea L. and Q. suber Lam.) European Journal of Forest Research 128(1): 27-36.

i

Montero G, Torres E, Canellas C et al (1994). Regeneración de alcornocales. Síntesis bibliográfica. In Simposio Mediterráneo sobre Regeneración del Monte Alcornocal, Mérida/Montsargil/Sevilla. Instituto de Promoción del Corcho, Mérida, p 101-112.

i

Moreno G & Pulido FJ (2009). The function, management and persistence of dehesas. In: Agroforestry systems in Europe, current status and future prospects. A Rigueiro, MR Mosquera, J McAdam (eds). Berlin: Springer. p 127–160.

i

Pausas JG (1997). Resprouting of Quercus suber in NE Spain after fire. Journal of Vegetation Science 8: 703-706.

i

Pausas JG, Ribeiro E, Dias SG et al (2006). Regeneration of a marginal Quercus suber forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17:729-738.

i

Pausas JG, Marañon T, Caldeira M et al (2009). Natural regeneration. In: Cork oak woodlands on the edge, ecology, adaptive management, and restoration. J Aronson, JS Pereira, JG Pausas (eds). Washington (DC): Island Press. p 115-128.

i

Pérez-Devesa M, Cortina J, Vilagrosa A et al (2008). Shrubland management to promote Quercus suber L. establishment. Forest Ecology and Management 255:374-382.

i

Pérez-Ramos IM, Urbieta IR, Zavala MA et al (2008). Regeneration ecology of Quercus suber (cork oak) in southern Spain. In: SuberWood: New challenges for the integration of cork oak forests and products. Universidad de Huelva. P 195-204

i

Plieninger T (2007). Compatibility of livestock grazing with stand regeneration in Mediterranean holm oak parklands. Journal of Natural Conservation 15:1-9.

i

Plieninger T, Pulido FJ & Konold W (2003). Effects of land use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environmental Conservation 30:61-70.

i

Plieninger T, Pulido FJ & Schaich H (2004). Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. Journal of Arid Environments 57:345-64.

i

Pons J & Pausas JG (2006). Oak regeneration in heterogeneous landscapes: the case of fragmented Quercus suber forests in the eastern Iberian Peninsula. Forest Ecology and Management 231:196-204.

i

Pons J & Pausas JG (2008). Modelling jay (Garrulus glandarius) abundance and distribution for oak regeneration assessment in Mediterranean landscapes. Forest Ecology and Management 256:578–84.

i

Pulido FJ & Díaz M (2002). Dinámica de la regeneración natural del arbolado de encina y alcornoque. In La gestión forestal de las dehesas. FJ Pulido, P Campos & G Montero (eds), IPROCOR, Mérida p. 39-62.

i

Pulido FJ & Díaz M (2005). Regeneration of a Mediterranean oak: a whole cycle approach. Ecoscience 12:92-102.

i

Pulido FJ, Díaz M & Trucios S H (2001). Size-structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. Forest Ecology and Management 146:1-13.

i

Pulido F, García E, Obrador JJ et al (2010). Multiple pathways for tree regeneration in anthropogenic savannas: incorporating biotic and abiotic drivers into management schemes. Journal of Applied Ecology 47:1272-1281.

i

Ramírez JA & Díaz M (2008). The role of temporal shrub encroachment for the maintenance of Spanish holm oak Quercus ilex dehesas. Forest Ecology and Management 255:1976-83.

i

Rolo V, Plieninger T & Moreno G (2013). Facilitation of holm oak recruitment through two contrasted shrubs species in Mediterranean grazed woodlands. Journal of Vegetation Science 24: 344–355.